
D E T E R M I N A T I O N  OF T H E R M A L  D I F F U S I V I T Y  

F R O M  E X P E R I M E N T A L  DATA 
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An algorithm is discussed for determining the temperature  dependence of the thermal diffu- 
sivity from thermocouple measurements at one or more points within a body. 

Various stationary and nonstationary methods have been developed [1] for determining the tempera-  
lure  dependence of the thermophysical character is t ics  of materials .  Most of the existing methods are  
based on an analytic solution of very simple heat-conduction problems, which imposes certain restr ict ions 
on their  use.  Stationary methods are  very time consuming, since a separate experiment is generally r e -  
quired to obtain a single point on the curve for a thermophysical coefficient as a function of temperature .  
One nonstationary experiment can yield values of thermophysical propert ies  over a wide range of tempera-  
tu res .  

The most promising methods for determining thermophysical propert ies  are  methods based on solu- 
tions of inverse nonstationary heat-conduction problems involving the thermophysieal coefficients. In 
this case the temperature  dependence of the thermophysical character is t ics  of a material  is determined 
by using known boundary conditions and measured values of the temperature  inside a body. 

We consider the namerical determination of the polynomial dependence of the thermal diffusivity 
N 

a(T) = Z ak Tk from the conditions 
k==5. 

OT = a (T) d~T (1) 
"o~ O--if-' O < x < b ,  O<x<xm,  

OT (0, x) 
T (0, x) = ql (x) or Ox ql (x), (2) 

OT (b, ~) _ (3) 
T (b, x) = q2 (x)or Ox qs (x), 

T (x, O) = ~ (x), O ..< x ~< b, 

T(xp ,  x ) =  fp(x), p = 1, 2 . . . . .  M,  O ~ < x p ~ b ,  

(4) 

(5) 

where qi(r), q2(T), ~(X), and fp(r) a re  known functions. 

The cr i ter ion for choosing the unknown parameters  ak, k = 0, 1 . . . . .  N is written in the form 

M ~rn 

I(a o, a~ . . . . .  aJv)= ~ S  [Tp(x ) - - fp (x ) ]  sdx'*'rnin, (6) 
p ~ l  0 

where the Tp(T) are  the calculated values of the temperature  at the points Xp, p = 1, 2 . . . . .  M where the 
thermocouples are  located, and the fp(r) a re  the measured temperatures  at these same points. 

The problem formulated is the simplest inverse problem involving the thermophysical coefficients 
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and is of in te res t  largely  as an i l lus t ra t ion of the method. In prac t ice  this formulat ion can be used to de-  
t e rmine  the volumetr ic  heat capacity of a mater ia l  C (T) for a known the rmal  conductivity ;~ (T). In this 
case the heating problem is reduced to the form (1)- (4) by the Kirchhoff substitution 

T 

y = ~ (~) d~ 

0 

The heating of a sample in the ex t remal  problem (1)- (6) can be rea l ized for boundary conditions 
which vary  a rb i t r a r i l y  with t ime.  

We use the gradient  method to minimize the functional (6). We calculate the der ivat ives  of the func- 
tional with respec t  to the pa rame te r s  sought for,  

214 ~rn 

OI _ 2 [ T ~ , ( ~ ) - - [ p ( ~ ) ] ~ d ~ ,  k = 0 ,  1 . N.  (7) 
Oa h ' . . , 

p ~ l  

Equation (7) involves N + 1 unknown functions O k = [ O T p ( r ) / 3 a k ]  , k = 0, 1 . . . . .  N. To de te rmine  
them we differentiate Eqs. (1)- (4) with r e spec t  to o k. We obtain N + 1 boundary-value  problems 

o r  

O0 k 
N ) 

Ox ~ ; Ox 2 Ox ~ 

O ~ x ~ b ,  O ~ v ~ < ~ m ,  

Oh(x ,  0 ) =  O, O ~  x ~ b ,  

0 h (0, ~) = O k (b, ~) = 0 

O0 h (0, ~) _ 00~  (b, ~) 

Ox Ox 

k = 0 , 1  . . . . .  N. 

--0,  

(s) 

(9) 

(1 O) 

We use the method of s teepest  descent ,  construct ing the approximations by using the relat ion 

ark +i = ar - - ~ r  Ol k = O, t . . . . .  N ,  (11) 
k Oa k ' 

where r is the number of the i terat ion.  

The descent  pa rame te r  ~r is de termined f rom the condition that the functional (6) be minimum at 
the (r + 1)-th i teration,  

m i n I ( a ~ - - ~ r  Ol , k = O ,  1, . .  N )  
~r Oah 

P a r a m e t e r  Cr can be chosen explicit ly.  Suppose a~ (k = 0, 1 . . . . .  N) is changed by - - ~ r ( ~ I / O a k ~  . 

Then the function T(x, r) changes by ~r(x, T). Neglecting second-o rde r  quantities we obtain f rom Eqs. 
(1)-(4) 

_ _  __ ~ ~ OI Tk 0 2T = a (T) _ _  (12) 
O~ Ox ~ = Oa k Ox 2 ' 

O ~ x ~ b ,  O ~ v ~ ,  

%(x, o)=o,  O~x.<.b, (13) 

(14) ~ r  (0, T) : ~ r  (b, z) = 0 or 0~r (0, x) 
Ox 

Problem (12)-(14) is l inear in fir. There fo re  we can wri te  

~ 0 %  (b, ,c) 
Ox 

- - 0 .  

z[ r+ l 
M ~rr~ 

p~ l  0 
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TABLE 1. Values of the Functional I and the Coefficients  a o and 
a t Determining  the Polynomial  

I 
ao 

a 1 

0 I " "  I 30 

0,469.10 -1 
0.5 
0,2 

0,1826.10-3 
0,8567 
0,2726 

I 0,4616.10_ 7 
0,8011 

�9 . .  0,3960 

�9 . .  55 

... 0,7628.10-1o 
0,79999 
0,39999 

Hence,  s ince it is n e c e s s a r y  that  OI r +1/3 fir = 0, we obtain 

M "t'n~ 

S IT, 0% 
p ~ l  0 

M "~rn 

p ~ l  0 

(15) 

The i t e ra t ive  p r o c e s s  is  cons t ruc ted  in the following way: The ze ro  approx imat ion  of the requ i red  
p a r a m e t e r s  is specif ied and p r o b l e m  (1}- (4) is solved.  Using the calculated t e m p e r a t u r e  dis t r ibut ion p rob -  
l e m  (8)- (10) is  solved N + 1 t imes  and the grad ien t  of the functional is calculated f r o m  Eq. (7). The func- 
t ion ~r(X, T) is de te rmined  f r o m  (12}-(14) and the depth of descent  fir is  calcula ted.  Af ter  this the new 
approx imat ion  is found f r o m  Eq. (11} and used for the next i t e ra t ion .  

The a lgor i thm desc r ibed  above was p r o g r a m m e d  in ALGOL for  a B~SM-6 computer .  An impl ic i t  
boundary -va lue  p r o b l e m  approx imat ion  scheme  was used  with the net 

co = { x  i = hi ,  i = O, 1 . . . . .  n; x$ = A.ej, j = O, 1, . . . .  m}  

(of. [2]). 

The r e su l t s  of a calculat ion to  i l lus t ra te  the method a r e  shown in Table  1. For  an  a p r i o r i  known 
function a (T) = 0.8 + 0.4 T the t e m p e r a t u r e  d is t r ibut ion  was obtained in an infinite plate of th ickness  b = 1 
for  the following boundary condit ions:  

~p (x) = 0 = const, OT (0, x____~) = 1, OT (b, "e) = O. 
Ox Ox 

The t e m p e r a t u r e  at  x = b was used as input data for  the r egene ra t ion  of a (T). The calculat ion was 
p e r f o r m e d  for  an n x m = 50 x 50 net and requ i red  about 15 min.  

No pa r t i cu l a r  difficulty Ks involved in extending the p re sen t  method to a reg ion  with moving boundar -  
i e s .  S imi la r ly  an  a lgor i thm can be cons t ruc ted  to de t e rmine  another  coefficient  in the heat -conduct ion 
equation. 

It should be  noted that  the a p r i o r i  speci f ica t ion  of the degree  of the regenera t ing  polynomial  is not a 
pa r t i cu l a r ly  s t r ingent  r e s t r i c t i on .  

The r e su l t s  of p roces s ing  the expe r imen ta l  data show that  the t e m p e r a t u r e  dependence of the t h e r m o -  
phys ica l  c h a r a c t e r i s t i c s  of var ious  m a t e r i a l s  is adequately approx imated  by polynomials  of no higher  de-  
g ree  than the th i rd .  

C r i t e r i on  (6) can be used when the input t e m p e r a t u r e s  a r e  known exact ly .  If the input data a r e  in 
e r r o r  it is n e c e s s a r y  to  u se  the pr inc ip le  of d i sc repancy  

2~1 Trn 

I = ~ .[ [rp (x) [p (T)IM~ .~ ~, ( 1 6 )  

p=l  0 

where  
M l:rn 

6 = at; 
p ~ l  0 

~p(r) is the mean  squa re  deviat ion of the input t e m p e r a t u r e s  at  the points x = Xp. We note that in a real" 
exper iment  the degree  of the polynomial  sought for  can a l so  be chosen f rom condition (16). 
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NOTATION 

a(T), thermal diffusivity; T, temperature;  x, coordinate; r, time; ~(x), initial temperature dis- 
tribution; a k, polynomial coefficient; fp(r), input temperatures;  y, model temperature;  ,\(T), thermal 
conductivity; I, functional; 5, e r ror  of input data; q, heat flux or temperature on the boundary of the 
region. 

I. 

2. 
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